Macaulay Style Formulas for Sparse Resultants

نویسنده

  • CARLOS D’ANDREA
چکیده

We present formulas for computing the resultant of sparse polynomials as a quotient of two determinants, the denominator being a minor of the numerator. These formulas extend the original formulation given by Macaulay for homogeneous polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-lifting Macaulay-type formulae of generalized unmixed sparse resultants

Resultants are defined in the sparse (or toric) context in order to exploit the structure of the polynomials as expressed by their Newton polytopes. Since determinantal formulae are not always possible, the most efficient general method for computing resultants is as the ratio of two determinants. This is made possible by Macaulay’s seminal result [15] in the dense homogeneous case, extended by...

متن کامل

Sparse Resultant of Composed Polynomials IMixed-. Unmixed Case

The main question of this paper is: What happens to sparse resultants under composition? More precisely, let f1, . . . , fn be homogeneous sparse polynomials in the variables y1, . . . , yn and g1, . . . , gn be homogeneous sparse polynomials in the variables x1, . . . , xn. Let fi ◦ (g1, . . . , gn) be the sparse homogeneous polynomial obtained from fi by replacing yj by gj . Naturally a quest...

متن کامل

Determinants of Modular Macaulay Matrices

Introduction: Resultants of multi-variate polynomials are fundamental for solving systems of polynomial equations and have numerous applications. Thus they are being intensely studied. Macaulay [3] showed that the projective resultant of a list of multi-variate polynomials is the quotient of two determinants. The numerator of this quotient is the determinant of a (sparse) matrix containing the ...

متن کامل

φ: P n �� � (P 1) n+1

We develop in this paper some methods for studying the implicitization problem for a rational map φ : Pn 99K (P1)n+1 defining a hypersurface in (P1)n+1, based on computing the determinant of a graded strand of a Koszul complex. We show that the classical study of Macaulay Resultants and Koszul complexes coincides, in this case, with the approach of approximation complexes and we study and give ...

متن کامل

Residues and Resultants

Resultants, Jacobians and residues are basic invariants of multivariate polynomial systems. We examine their interrelations in the context of toric geometry. The global residue in the torus, studied by Khovanskii, is the sum over local Grothendieck residues at the zeros of n Laurent polynomials in n variables. Cox introduced the related notion of the toric residue relative to n + 1 divisors on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002